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Abstract. Hot monomers are particles having a transient mobility (a ballistic flight) prior to being
definitely absorbed on a surface. After arriving at a surface, the excess energy coming from the
kinetic energy in the gas phase is dissipated through degrees of freedom parallel to the surface plane.
In this paper we study the hot monomer–monomer adsorption–reaction process on a continuum
(off-lattice) one-dimensional space by means of Monte Carlo simulation. The system exhibits a
second-order irreversible phase transition between reactive and saturated (absorbing) phases which
belong to the directed percolation (DP) universality class. This result is interpreted by means of
a coarse-grained Langevin description which allows us to extend the DP conjecture to transitions
occurring in continuous media.

1. Introduction

Interacting particle systems are relevant to wide-ranging phenomena in physics, chemistry,
biophysics, ecology, etc. The concept of ‘particles’ is used in a broad sense, that is ‘particles’
can be atoms, molecules, spins, individuals, etc, and whilst attention is drawn to the interactions
among particles no attempt is made to achieve a detailed description (e.g. quantum mechanical)
of the particle itself. Therefore, due to interactions, the occurrence of complex behaviour, such
as phase transitions, self-organization, chaos, bistability, etc, may be observed [1].

Within this context, an active field of research is the study of far-from-equilibrium reaction
systems [2, 3]. Irreversible phase transitions (IPTs) between active regimes (where reactions
are sustained) and absorbing states (where reactions are no longer possible) have been reported
in a great variety of models such as the Ziff, Gulari and Barshad (ZGB) model for the
catalytic oxidation of CO [2], the dimer–dimer model [4], the contact process [5,6], forest-fire
models [7], etc (for a recent review see e.g. [3]). According to the Janssen–Grassberger
conjecture [8, 9], irreversible reaction systems that exhibit a phase transition to a single
absorbing state characterized by a scalar order parameter belong to the directed percolation
(DP) universality class. This conjecture, stated a long time ago for unique absorbing states, has
been further generalized for the cases where such states are non-unique [6,10]. A special case
corresponds to non-equilibrium systems where, provided an IPT exists, there is in addition a
local or global conservation of particles of modulo two, such as the branching and annihilating
random walks with an even number of offsprings [11, 12]. In these cases a new universality
class emerges, commonly called the parity conserving (PC) class, which is due to the existence
of two statistically equivalent absorbing states at the critical point [13]. However, global
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conservation of particles of modulo two may also lead to exponents in the PC class only
when local spontaneous annihilation (1X→ 0) is highly inhibited. Then, at a coarse-grained
level, the relevant surviving processes are those conserving parity. In other words, parity
conservation can be restored at a coarse-grained level [14, 15]. A nice example where global
parity conservation still leads to DP exponents is given by Inuiet al [16]. It is clear in this
case that spontaneous annihilation must be taken into account.

IPTs are studied largely by means of Monte Carlo simulations and mean field approaches.
Recent developments of field-theoretic renormalization group techniques have provided a new
theoretical framework where non-equilibrium phase transitions can be studied [17]. These
techniques are able to identify the relevant processes in a given universality class although the
quantitative predictions are still poor.

So far, most of the simulations have been performed usingdiscretelattices where each
particle fills a single site on the lattice and neighbouring particles may react with a certain
probability. In contrast, our knowledge of the behaviour of irreversible reaction systems in
continuous media is rather poor. In order to stress some dramatic differences that may arise
for a reaction system when it is simulated off-lattice, let us consider the simplest case of the
B + B → 0 irreversible reaction which proceeds according to the Langmuir–Hinshelwood
mechanism:

B(g) + S → B(a)

B(g) + S → B(a)

B(a) +B(a)→ 0 + 2S

(1.1)

whereg anda refer to the gas and adsorbed phases, respectively, whileS represents a site
on the surface. At first, we assume thatB species adsorbed on nearest-neighbour sites react
with unitary probability (Pr = 1). If we used a discrete lattice, reactions would be sustained
indefinitely, i.e. the system could not irreversibly evolve into an absorbing state. However,
considering a continuous media, the random adsorption ofB particles of finite sizeσ causes
the formation of several interparticle gaps of size smaller thanσ . So, in the infinite time
limit ( t → ∞) the sample becomes imperfectly covered byB species separated by small
interparticle gaps. Reaction is no longer possible and the system becomes irreversibly trapped
into an absorbing state (infinitely degenerated). The maximum jamming coverage attained in
one dimension is2j ≈ 0.747 59 (Pr = 0), which corresponds to the so-called car parking
problem [18,19].

In this paper we show that by introducing the adsorption of species with transient mobility
in a continuous one-dimensional (1D) medium, it is possible to open a window where reactions
are sustained. However, by tuning the external parameter which controls the transient mobility
of particles it is possible to irreversibly drive the system into an absorbing state.

It should be mentioned that the study of reactions of atoms in the gas phase possessing
thermal energy with adsorbed atomic CO species on metal and semiconductor surfaces is a topic
of current interest. In contrast to thermally activated reactions among adsorbed species, i.e.,
the so-called Langmuir–Hinshelwood mechanism, these kind of reactions take place under far-
from-equilibrium conditions. Consequently, the determination of the underlying mechanism
as well as the understanding of the dynamic behaviour is challenging work. Within this context,
very recently Kimet al [20] have reported experimental studies of the reaction of hot H atoms
with adsorbed D atoms (for further experimental works see the references in [20]).

It should be noted that from the theoretical point of view a number of related models
for random sequential adsorption with diffusion [21, 22] and desorption [23] have also been
proposed and studied (for a review see also [18]). However, interest in such studies is addressed
to the asymptotic approach to the jammed state. In contrast, in this paper our interest is focused
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on the irreversible critical behaviour of a reactive system.
So this paper is devoted to the characterization of such IPT in continuous media and it is

organized as follows: section 2 gives the description of the model and the simulation technique.
In section 3 we discuss the results while conclusions and remarks are presented in section 4.

2. The model and the Monte Carlo simulation method

In this paper, we study a 1D off-lattice adsorption–reaction model in which particles of size
σ undergo a ballistic flight just after deposition on the substrate. The system evolves in time
under the following local rules. (i) A positionx is randomly selected on the substrate. If
the interval [x − σ/2, x + σ/2] is empty, then the adsorption trial is successful, otherwise it
is rejected. So, it is clear that double occupancy of positions is forbidden. (ii) Right after a
successful adsorption trial, a random direction is selected (left or right). Then, the particle
undergoes a ballistic flight in the previously selected direction up to a distanceR from the
adsorption positionx, provided that no other already deposited particle is found along the way.
(iii) If during the flight one particle hits another previously adsorbed particle which is already
at rest on the substrate, the following alternatives can occur: (1) the annihilation (B +B → 0)
occurs with probabilityPr . Then, both particles react and leave the system. (2) Particles do
not react (with probability(1− Pr)), and the flying particle is frozen at the collision point.

The ballistic flight mimics ‘hot monomer’ adsorption, allowing the incoming particle to
transform its energy into degrees of freedom parallel to the substratum. The length of the flight
R is finite in order to account for frictional dissipation. The model has two externally tunable
parameters, namelyR andPr . ForPr = 0 one recovers the ‘hot monomer’ random sequential
adsorption model [24] while forR = 0 andPr = 0 one has the 1D car parking problem [19].

In order to simulate a continuous medium on a digital computer, one actually considers
a discrete lattice. However, each site of sizeσ is subdivided into 264 different adsorption
positions. This high degree of discretization has provided excellent results when compared
with the exact analytic solution of a related problem [24].

Preliminary results show that the system can undergo continuous IPTs between a stationary
reactive state and an absorbing state without reactions when varying the parameters. This
can easily be tested by considering the casePr = 1 andR = 0 (R > 1) which gives an
absorbing (reactive) state, respectively. It should be pointed out that continuous IPTs are
dominated by fluctuations. Consequently, in a finite system and close to the critical point, the
stationary state of the reactive phase can irreversibly evolve into the saturated state (absorbing
state). Due to this circumstance, the precise determination of both critical points and critical
exponents is rather difficult. However, this shortcoming can be avoided by performing an
epidemic analysis. For this purpose one starts, att = 0, with a configuration close to one
of the absorbing states. It is clear that different absorbing states will normally differ in the
density of monomers. It should be pointed out that the dynamical critical behaviour of systems
with infinitely many absorbing configurations is expected to depend upon the initial density
of inactive particles [6, 25]. However, static critical behaviour appears to be independent of
it. From the set of possible initial densities, a valueρn is particularly important, namely the
stationary density of inactive particles which results after the natural evolution of the system in
the subcritical region has finished. The valueρn is relevant, since it is only for this value that
the natural dynamical critical behaviour emerges. Preliminary simulation results show thatρn
depends on the parameterPr , but their values have not been included in this work for the sake
of space. The dependence of the critical behaviour on the set of initial densities is the subject
of an ongoing investigation.

Consequently, the initial state for the epidemic analysis is generated by the evolution of
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the system very close to the critical point until poisoning is achieved. After generating this
stationary poisoned state, we remove one or two particles from the middle of the system in
order to create a small active area where adsorption is now possible. It should be noted that an
empty area is considered to be active if it is longer than or equal toσ . Then, the time evolution
of the system is analysed by measuring the following properties: (i) the average amount of
active area at timet , A(t); (ii) the survival probability of the active area at timet , Ps(t); and
(iii) the average distance over which the active area has spread at timet , D(t). Finite-size
effects are absent because the system is taken large enough to avoid the presence of active area
at the boundaries. For this purpose a sample of 104σ is enough. Averages are taken over 105

to 106 different samples. Near the critical point, the amount of active area is often very small.
Then, we improve the efficiency of the algorithm by keeping a list of the positions where there
is active area. Time is incremented by 1/a(t), wherea(t) is the amount of active area at timet .
The time evolution of the active area is monitored up tot = 105. At criticality, the following
scaling behaviour holds:

A(t) ∝ tη (2.1)

Ps(t) ∝ t−δ (2.2)

and

D(t) ∝ t z/2 (2.3)

whereδ, η andz aredynamicexponents.

3. Results and discussion

Preliminary simulations show that forPr = 1 it is possible to achieve a stationary reactive state
in the large-R limit (i.e. for R > 2) while in the opposite limit (R 6 1.5) the system becomes
irreversibly saturated byB species. In order to obtain a quantitative description of the IPT
we have performed epidemic studies around the critical edge. Figures 1(a)–(c) show log–log
plots ofA,Ps andD versus the timet , obtained for different parameter values. The three plots
exhibit a power law behaviour which is the signature of a critical state. Using smaller (greater)
R values we observe slight upward (downward) deviations in the three plots which indicate
supercritical (subcritical) behaviour (these results are not shown for the sake of clarity). Then,
the critical exponents obtained by regressions are

η = 0.308± 0.004 δ = 0.165± 0.003 z/2= 0.625± 0.002. (3.1)

These values are in excellent agreement with the exponents corresponding to the DP
universality class in 1 + 1 dimensions [8,9]. Recently, extended series expansion calculations
[26] have provided very accurate values for the DP critical exponents, namely

η = 0.313 68(4) δ = 0.159 47(3) z/2= 0.632 61(2). (3.2)

Therefore, we conclude that the studied adsorption–reaction model on acontinuous medium
belongs to the DP universality class like many other systems already studied ondiscrete lattices.
It should be noticed that the present model has infinitely many absorbing states, so as in the case
of the dimer–dimer model [4] the DP conjecture holds for non-unique absorbing states [8,10]
at least as long as the absorbing states can be solely characterized by the vanishing of a single
scalar order parameter.

We have also studied the case of imperfect reaction, i.e.Pr < 1. Figure 2 shows a plot
of the phase diagram. The phase boundary curve was determined by means of an epidemic
analysis, as is shown in figure 1. The obtained critical exponents are

η = 0.312± 0.004 δ = 0.157± 0.003 z/2= 0.631± 0.001. (3.3)
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Figure 1. Log–log plots of the active areaA(t), the survival probabilityPs(t) and the epidemic
diameterD(t) versust . Results are obtained for: (a) Pr = 0.60 andR = 6.40, (b) Pr = 0.80
andR = 1.685 and (c) Pr = 1 andR = 0.853. Averages are taken over (105) runs with different
poisoned initial states.

Once again, these exponents are in good agreement with those corresponding to DP. Scanning
the whole critical curve we obtain second-order IPTs that belong to the DP universality class.
However, the special caseR→∞merits further discussion. ForPr = 1 (Pr = 0), the system



8028 D H Linares et al

Figure 1. (Continued)

Figure 2. The phase diagram for theB + B = 0 reaction on the 1D continuum (off-lattice). The
active and adsorbing states zones are shown on aPr versusR/(R + 1) plot. The extreme values of
R in the diagram are 0.853 and∞ for Pr = 1 and 0.5, respectively. According to figures 1 and
3 the point (R = ∞, Pr = 0.5) is the only one which does not correspond to the DP universality
class.
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Figure 3. Log–log plot of the active areaA(t), the survival probabilityPs(t) and the epidemic
diameterD(t) versust for the singular case withR = ∞. The solution of this case is exactly the
one given by the mean field approximation. Dotted, full and dashed curves correspond to epidemic
studies forPr < 0.5,Pr = 0.5 andPr > 0.5, respectively.

evolves towards a reactive (absorbing) state, respectively. Then, a transition is expected at some
intermediatePr value. In this case, the time evolution of the active area can be described by
means of a mean field equation. In fact, the active areaA(t)will grow (decrease) proportionally
toA(t)Pr (A(t)(1− Pr)), respectively; so

dA

dt
= A(t)Pr − A(t)(1− Pr) (3.4)

which leads to

A(t) = A0e(2Pr−1)t . (3.5)

Therefore,Pr = 1
2 is a critical value such that forPr > 1

2 (Pr < 1
2) the active area will increase

(decrease) exponentially in time, while just at criticalityA(t)will remain constant (A(t) = A0),
which is consistent with a mean field exponentηMF = 0. The predicted behaviour is confirmed
by means of simulations as is shown in figure 3. By means of linear regressions the following
exponents are obtained forPr = 1

2:

η ≈ 0.0 δ ≈ 1.0 z/2≈ 1.0. (3.6)

Then, our mean field estimate forη is in good agreement with the simulation results.
Regrettably, we were unable to derive the mean field values for the remaining exponents.

We conclude that the particular pointPr = 1
2, R→∞ is a first-order point (see figure 2)

which is not in the DP class which characterizes the whole critical curve.
In the following, we give theoretical arguments by means of a coarse-grained Langevin

description that supports the result concerning the universality class of the model. First, note
that the normalized variables needed to characterize the configurations of the system are the
amount of active areaa(x, t), the number of monomers in the systemn(x, t) and the amount
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of inactive areav(x, t). These variables are not independent since we have the constraint
a(x, t) + n(x, t) + v(x, t) = 1. It is clear from the above discussion that the time evolution of
the system ends whena(x, t) = 0. Sincea(x)→ 0 at criticality, this quantity can be chosen
as the order parameter of the system. Then, we will try to describe the time evolution of the
system near the critical point by means of two coupled Langevin equations, for instance, one
for a(x, t) and the other forn(x, t). Due to the nature of the absorbing configurations, each
term of these equations must vanish whena(x, t)→ 0.

Let us consider the microscopic processes which are relevant to characterize the critical
behaviour of the system. First of all, both diffusion ofa(x) andn(x) can be interpreted as
successive adsorption–reaction processes. Within a one-site description, bothn(x) anda(x)
will increase proportionally toa(x). The reaction processes will contribute to the equations
with a coupling term proportional toa(x)n(x). It is also clear that monomer flights will
introduce terms proportional toa(x)2, a(x)3, etc. Since only the lower-order terms are relevant
for a renormalization group treatment [27], we just keep the term proportional toa(x)2. Then,
we can write down the following Langevin equations:

∂n(x, t)/∂t = k1∇2a(x, t) + k2a(x, t)− k3a(x, t)
2 − k4a(x, t)n(x, t) + η1(x, t) (3.7)

∂a(x, t)/∂t = u1∇2a(x, t) + u2a(x, t)− u3a(x, t)
2 − u4a(x, t)n(x, t) + η2(x, t) (3.8)

whereη1(x, t) andη2(x, t) are uncorrelated noises proportional to
√
a(x, t), ki andui are

coefficients. This system of coupled Langevin equations is similar to that obtained for the
‘pair contact process’ [5, 6] which is one of the prototype systems with multiple absorbing
states. Mũnozet al [28] have shown that for larget the equation corresponding to the activity
(equation (3.8) for the present model) reduces to the Langevin representation of DP. Then, our
simulation results are consistent with the above-presented theoretical arguments. The same
authors have also shown that systems with many available absorbing configurations display
strong memory effects that may lead to anomalous scaling. In addition to this, Mendeset al[25]
have proposed a generalized hyperscaling relation which has proved to be valid in systems with
multiple absorbing configurations. Simulation results on several lattice models with infinitely
many absorbing states support both theoretical arguments [6,25,29]. The role that initial states
play in the temporal evolution of the present model is under investigation.

4. Conclusions and final remarks

A model for the irreversible adsorption–reaction of a single species on a continuous medium
is studied by means of numerical simulations. We would like to stress and comment upon the
following interesting features of the system: (i) in contrast to standard (reversible) transitions,
non-equilibrium IPT can happen in one dimension. (ii) The studied adsorption–reaction model
clearly shows interesting new effects that may arise when a process is modelled on a continuous
medium. Since the system always reaches a stationary reactive state when simulated on a
discrete lattice but a final poisoned state can be observed on a continuous one (e.g. forPr = 1
andR = 0), one may expect a crossover behaviour when the ‘discretization degree’ of the
surface is tuned from one extreme to the other. This can be achieved by considering the
adsorption ondiscrete latticesof species of arbitrary lengthr, i.e. r-mers. We found that the
reactive random sequential adsorption (RRSA) of dimers (r = 2) always leads to a reactive
steady state, whose stationary coverage is close to2 ≈ 0.5, and no poisoning is observed.
However, the RRSA of trimes (r = 3) causes irreversible poisoning of the lattice with an
average saturation coverage close to2ST ≈ 0.7. In the case of dimers, two absorbing states
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of the type

. . . BBVBBVBBVBB . . .

. . . V BBVBBVBBVBBV . . .
(4.1)

whereV is an empty site, can be expected. So, during the RRSA the formation of several
interfaces of the type. . . BBVBBVVBBVBB . . . takes place. Due to coarsening we expect
that in the asymptotic limit (t →∞) both absorbing states will form two semi-infinite domains
separated by an interface. The competition between these domains will keep the system in
the reactive state for ever. Just by increasingr = 2 to 3, an infinite number of absorbing
configurations appear in the system. So, the arguments developed above no longer hold and
poisoning is observed. Consequently, an IPT is located betweenr = 2 and 3 and its precise
location requires the study of the adsorption–reaction problem with particles of non-integer
length. However, adsorption ofr-mers of lengthr = 2 + ε would cause the argument of
the two competing absorbing states to fail. Therefore, we expect that the critical size, i.e.
‘the discretization degree’ is 2. (iii) To our best knowledge, this is the first off-lattice model
which exhibits a second-order IPT in the DP universality class. Consequently, this result once
again supports the DP conjecture [8] which can now be generalized to off-lattice models with
infinitely many absorbing states.

We expect that the interesting behaviour of the present simple reaction model will stimulate
further work on irreversible transitions and critical phenomena on continuous media, a field
that, to our best knowledge, remains almost unexplored.
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